If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.5x^2+3x-180=0
a = 4.5; b = 3; c = -180;
Δ = b2-4ac
Δ = 32-4·4.5·(-180)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-57}{2*4.5}=\frac{-60}{9} =-6+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+57}{2*4.5}=\frac{54}{9} =6 $
| x-65=1799 | | 6x+372+5x+281=70 | | x/(-3)+20=15 | | -w+184=62 | | 7x+4/7=15x-8 | | 51+112+x=180 | | -x+21=18 | | 4y-18=27 | | 270=120+(50x/10( | | x^2=9.4 | | 2p+8=p+12 | | 71+x=74 | | k-6/2=1 | | 5p+4=3p+16 | | 5x+9=x-19 | | 4(4r^2-5)=0 | | 4(3x-5)=10x-2 | | 2x+7-6=0 | | 49+x+112=180 | | x+102+146+120+124+158=360 | | 2x+15+3x-4=90 | | 14-2w=36 | | 5x-7+4x=3(6x-5)+5 | | 4x-32+6x+12=180 | | 42-11y=-97 | | (0.25)^2x=64 | | F(x)=-x^2+60x | | x+1+x+-1+x+3=90 | | 15x-6=13+3 | | (11x-1)+(6x)+(3x+1)=180 | | 3x-6+8x+4+60=180 | | 7-y=4.6 |